Oscillating kissing stem-loop interactions mediate 5' scanning-dependent translation by a viral 3'-cap-independent translation element.
نویسندگان
چکیده
The 3'-untranslated regions (UTRs) of a group of novel uncapped viral RNAs allow efficient translation initiation at the 5'-proximal AUG. A well-characterized model is the Barley yellow dwarf virus class of cap-independent translation elements (BTE). It facilitates translation by forming kissing stem-loops between the BTE in the 3'-UTR and a BTE-complementary loop in the 5'-UTR. Here we investigate the mechanisms of the long-distance interaction and ribosome entry on the RNA. Upstream AUGs or 5'-extensions of the 5'-UTR inhibit translation, indicating that, unlike internal ribosome entry sites in many viral RNAs, the BTE relies on 5'-end-dependent ribosome scanning. Cap-independent translation occurs when the kissing sites are moved to different regions in either UTR, including outside of the BTE. The BTE can even confer cap-independent translation when fused to the 3'-UTR of a reporter RNA harboring dengue virus sequences that cause base-pairing between the 3'- and 5'-ends. Thus, the BTE serves as a functional sensor to detect sequences capable of long-distance base-pairing. We propose that the kissing interaction is repeatedly disrupted by the scanning ribosome and re-formed in an oscillating process that regulates ribosome entry on the RNA.
منابع مشابه
Oscillating kissing stem–loop interactions mediate 59 scanning-dependent translation by a viral 39-cap-independent translation element
The 39-untranslated regions (UTRs) of a group of novel uncapped viral RNAs allow efficient translation initiation at the 59proximal AUG. A well-characterized model is the Barley yellow dwarf virus class of cap-independent translation elements (BTE). It facilitates translation by forming kissing stem–loops between the BTE in the 39-UTR and a BTE-complementary loop in the 59-UTR. Here we investig...
متن کاملtrans regulation of cap-independent translation by a viral subgenomic RNA.
Many positive-strand RNA viruses generate 3'-coterminal subgenomic mRNAs to allow translation of 5'-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNA1 (sgRNA1) is driven by the powerful cap-independent translat...
متن کاملBase-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA.
Translationally competent mRNAs form a closed loop via interaction of initiation factors with the 5' cap and poly(A) tail. However, many viral mRNAs lack a cap and/or a poly(A) tail. We show that an uncapped, nonpolyadenylated plant viral mRNA forms a closed loop by direct base-pairing (kissing) of a stem loop in the 3' untranslated region (UTR) with a stem loop in the 5' UTR. This allows a seq...
متن کاملCap-independent translational enhancement by the 3' untranslated region of red clover necrotic mosaic virus RNA1.
Red clover necrotic mosaic virus (RCNMV) is a member of the genus Dianthovirus and has a bipartite positive-sense genomic RNA with 3' ends that are not polyadenylated. In this study, we show that both genomic RNA1 and RNA2 lack a 5' cap structure and that uncapped in vitro transcripts of RCNMV RNA1 replicated to a level comparable to that for capped transcripts in cowpea protoplasts. Because th...
متن کاملIdentification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation.
Translation in plants is highly cap dependent, and the only plant mRNAs known to naturally lack a cap structure (m(7)GpppN) are viral in origin. The genomic RNA of tobacco etch virus (TEV), a potyvirus that belongs to the picornavirus superfamily, is a polyadenylated mRNA that is naturally uncapped and yet is a highly competitive mRNA during translation. The 143-nucleotide 5' leader is responsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2006